Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ventilation Control of Indoor Transmission of Airborne Diseases in an Urban Community

Identifieur interne : 002C65 ( Main/Exploration ); précédent : 002C64; suivant : 002C66

Ventilation Control of Indoor Transmission of Airborne Diseases in an Urban Community

Auteurs : Xiaolei Gao [République populaire de Chine] ; Yuguo Li [Hong Kong] ; Gabriel M. Leung [République populaire de Chine]

Source :

RBID : ISTEX:95DFC05A42DDBC3933082D7A82B45850C6E0B77A

English descriptors

Abstract

Following the recent severe acute respiratory syndrome epidemics and worldwide concern about the next pandemic, whether influenza or multiple drug resistant tuberculosis, has underlined the importance of effective interventions into airborne disease transmission in indoor environments in a community. The engineering control measures available include ventilation dilution, use of high-efficiency particulate air filters in a room or in the heating, ventilation, and air-conditioning (HVAC) system, and use of ultraviolet germicidal irradiation devices in ceiling area of a room or in the HVAC system. These methods are known to be effective in controlling or delaying airborne disease transmission in a single enclosure in both healthcare facilities and the community. However, there have been no studies of their relative effectiveness at the community level. This paper presents mathematical modeling of some engineering control strategies with a focus on ventilation and corresponding analysis of their relative effectiveness compared with other public health interventions in disease control in indoor environments at the community level. The results should help us to determine the most effective intervention strategies. We conclude that the engineering intervention methods such as building ventilation can be as effective as public health interventions and the ventilation rates specified in the existing standards such as ASHRAE 62 may be too low for the purpose of preventing or controlling airborne infectious diseases in indoor environments.

Url:
DOI: 10.1177/1420326X09104141


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ventilation Control of Indoor Transmission of Airborne Diseases in an Urban Community</title>
<author wicri:is="90%">
<name sortKey="Xiaolei Gao" sort="Xiaolei Gao" uniqKey="Xiaolei Gao" first="" last="Xiaolei Gao">Xiaolei Gao</name>
</author>
<author wicri:is="90%">
<name sortKey="Yuguo Li" sort="Yuguo Li" uniqKey="Yuguo Li" first="" last="Yuguo Li">Yuguo Li</name>
</author>
<author wicri:is="90%">
<name sortKey="Leung, Gabriel M" sort="Leung, Gabriel M" uniqKey="Leung G" first="Gabriel M." last="Leung">Gabriel M. Leung</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:95DFC05A42DDBC3933082D7A82B45850C6E0B77A</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1177/1420326X09104141</idno>
<idno type="url">https://api.istex.fr/ark:/67375/M70-6KVZ37QV-6/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000E64</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000E64</idno>
<idno type="wicri:Area/Istex/Curation">000E64</idno>
<idno type="wicri:Area/Istex/Checkpoint">000C28</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000C28</idno>
<idno type="wicri:doubleKey">1420-326X:2009:Xiaolei Gao:ventilation:control:of</idno>
<idno type="wicri:Area/Main/Merge">002D19</idno>
<idno type="wicri:Area/Main/Curation">002C65</idno>
<idno type="wicri:Area/Main/Exploration">002C65</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Ventilation Control of Indoor Transmission of Airborne Diseases in an Urban Community</title>
<author wicri:is="90%">
<name sortKey="Xiaolei Gao" sort="Xiaolei Gao" uniqKey="Xiaolei Gao" first="" last="Xiaolei Gao">Xiaolei Gao</name>
<affiliation wicri:level="1">
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR</wicri:regionArea>
<wicri:noRegion>Hong Kong SAR</wicri:noRegion>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Yuguo Li" sort="Yuguo Li" uniqKey="Yuguo Li" first="" last="Yuguo Li">Yuguo Li</name>
<affiliation></affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Hong Kong</country>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Leung, Gabriel M" sort="Leung, Gabriel M" uniqKey="Leung G" first="Gabriel M." last="Leung">Gabriel M. Leung</name>
<affiliation wicri:level="1">
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Community Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR</wicri:regionArea>
<wicri:noRegion>Hong Kong SAR</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Indoor and Built Environment</title>
<idno type="ISSN">1420-326X</idno>
<idno type="eISSN">1423-0070</idno>
<imprint>
<publisher>SAGE Publications</publisher>
<pubPlace>Sage UK: London, England</pubPlace>
<date type="published" when="2009-06">2009-06</date>
<biblScope unit="volume">18</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="205">205</biblScope>
<biblScope unit="page" to="218">218</biblScope>
</imprint>
<idno type="ISSN">1420-326X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1420-326X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Airborne</term>
<term>Airborne bacteria</term>
<term>Airborne disease transmission</term>
<term>Airborne diseases</term>
<term>Airborne infection</term>
<term>Airborne route</term>
<term>Airborne transmission</term>
<term>Atmos environ</term>
<term>Attack rate</term>
<term>Attack rate attack rate</term>
<term>Attack rates</term>
<term>Average contact number</term>
<term>Average contact time</term>
<term>Average household size</term>
<term>Average room volume</term>
<term>Average ventilation rate</term>
<term>Baseline</term>
<term>Baseline scenario</term>
<term>Basic seir model</term>
<term>Building ventilation</term>
<term>Bull math biol</term>
<term>Change rate</term>
<term>Change rates</term>
<term>Community integration model</term>
<term>Community level</term>
<term>Contact number</term>
<term>Contact rate</term>
<term>Contact time</term>
<term>Corresponding reduction</term>
<term>Daily contact number</term>
<term>Daily infectors</term>
<term>Daily infectors time</term>
<term>Different control strategies</term>
<term>Different time intervals</term>
<term>Different types</term>
<term>Disease dynamics</term>
<term>Disease outbreak</term>
<term>Disease transmission</term>
<term>Droplet</term>
<term>Droplet nuclei</term>
<term>Early stage</term>
<term>Engineering control</term>
<term>Engineering control methods</term>
<term>Engineering control strategies</term>
<term>Engineering interventions</term>
<term>Environ</term>
<term>Environmental conditions</term>
<term>Environmental protection department</term>
<term>Epidemiol</term>
<term>Equivalent ventilation rate</term>
<term>Exact timing</term>
<term>Exponential influence</term>
<term>Exposure time</term>
<term>Family members</term>
<term>General ventilation</term>
<term>Germicidal</term>
<term>Health interventions</term>
<term>Hepa</term>
<term>Hepa filter</term>
<term>Hepa filters</term>
<term>High contact rate community</term>
<term>Hong kong</term>
<term>Hong kong offices</term>
<term>Human beings</term>
<term>Incubation period</term>
<term>Indoor</term>
<term>Indoor environment</term>
<term>Indoor environments</term>
<term>Infection</term>
<term>Infection transmission</term>
<term>Infectious agents</term>
<term>Infectious contamination</term>
<term>Infectious diseases</term>
<term>Infectious period</term>
<term>Infector</term>
<term>Infectors</term>
<term>Influenza</term>
<term>Influenza outbreak</term>
<term>Input data</term>
<term>Input parameters</term>
<term>Integration model</term>
<term>Intervention effectiveness</term>
<term>Intervention model</term>
<term>Intervention policies</term>
<term>Intervention strategies</term>
<term>Isolation rate</term>
<term>Latent period</term>
<term>Mathematical model</term>
<term>Mathematical theory</term>
<term>Mechanical engineering</term>
<term>Modeling</term>
<term>Natural decay</term>
<term>Natural ventilation</term>
<term>Opening windows</term>
<term>Other hand</term>
<term>Other interventions</term>
<term>Outbreak</term>
<term>Overall attack rate</term>
<term>Pandemic influenza</term>
<term>Population density</term>
<term>Present model</term>
<term>Public health interventions</term>
<term>Public places</term>
<term>Pulmonary ventilation rate</term>
<term>Quanta generation rate</term>
<term>Quantum</term>
<term>Relative effectiveness</term>
<term>Residential buildings</term>
<term>Room volume</term>
<term>Scenario</term>
<term>Seir</term>
<term>Seir model</term>
<term>Significant effect</term>
<term>Single enclosure</term>
<term>Single room</term>
<term>Social contact</term>
<term>Social contact number</term>
<term>Social contact rate</term>
<term>Social contact structure</term>
<term>Successful transmission rate</term>
<term>Surgical masks</term>
<term>Susceptibles</term>
<term>Symptomatic infectors</term>
<term>Time interval</term>
<term>Transmission routes</term>
<term>Ultraviolet germicidal irradiation</term>
<term>Upper room</term>
<term>Uvgi</term>
<term>Uvgi devices</term>
<term>Ventilation</term>
<term>Ventilation rate</term>
<term>Ventilation rates</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Following the recent severe acute respiratory syndrome epidemics and worldwide concern about the next pandemic, whether influenza or multiple drug resistant tuberculosis, has underlined the importance of effective interventions into airborne disease transmission in indoor environments in a community. The engineering control measures available include ventilation dilution, use of high-efficiency particulate air filters in a room or in the heating, ventilation, and air-conditioning (HVAC) system, and use of ultraviolet germicidal irradiation devices in ceiling area of a room or in the HVAC system. These methods are known to be effective in controlling or delaying airborne disease transmission in a single enclosure in both healthcare facilities and the community. However, there have been no studies of their relative effectiveness at the community level. This paper presents mathematical modeling of some engineering control strategies with a focus on ventilation and corresponding analysis of their relative effectiveness compared with other public health interventions in disease control in indoor environments at the community level. The results should help us to determine the most effective intervention strategies. We conclude that the engineering intervention methods such as building ventilation can be as effective as public health interventions and the ventilation rates specified in the existing standards such as ASHRAE 62 may be too low for the purpose of preventing or controlling airborne infectious diseases in indoor environments.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Hong Kong</li>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Xiaolei Gao" sort="Xiaolei Gao" uniqKey="Xiaolei Gao" first="" last="Xiaolei Gao">Xiaolei Gao</name>
</noRegion>
<name sortKey="Leung, Gabriel M" sort="Leung, Gabriel M" uniqKey="Leung G" first="Gabriel M." last="Leung">Gabriel M. Leung</name>
</country>
<country name="Hong Kong">
<noRegion>
<name sortKey="Yuguo Li" sort="Yuguo Li" uniqKey="Yuguo Li" first="" last="Yuguo Li">Yuguo Li</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C65 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002C65 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:95DFC05A42DDBC3933082D7A82B45850C6E0B77A
   |texte=   Ventilation Control of Indoor Transmission of Airborne Diseases in an Urban Community
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021